skip to main content


Search for: All records

Creators/Authors contains: "Indebetouw, Rémy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    To investigate the effects of stellar feedback on the gravitational state of giant molecular clouds (GMCs), we study12CO and13CO Atacama Large Millimeter/submillimeter Array maps of nine GMCs distributed throughout the Large Magellanic Cloud (LMC), the nearest star-forming galaxy to our own. We perform noise and resolution matching on the sample, working at a common resolution of 3.″5 (0.85 pc at the LMC distance of 50 kpc), and we use the Spectral Clustering for Molecular Emission Segmentation clustering algorithm to identify discrete substructure, or “clumps.” We supplement these data with three tracers of recent star formation: 8μm surface brightness, continuum-subtracted Hαflux, and interstellar radiation field energy density inferred from dust emission. The12CO clumps identified cover a range of 3.6 dex in luminosity-based mass and 2.4 dex in average 8μm surface brightness, representative of the wide range of conditions of the interstellar medium in the LMC. Our observations suggest evidence for increased turbulence in these clouds. While the turbulent linewidths are correlated with clump surface density, in agreement with previous observations, we find even better correlation with the three star formation activity tracers considered, suggesting stellar energy injection plays a significant role in the dynamical state of the clumps. The excess linewidths we measure do not appear to result from opacity broadening.12CO clumps are found to be typically less gravitationally bound than13CO clumps, with some evidence of the kinetic-to-gravitational potential energy ratio increasing with star formation tracers. Further multiline analysis may better constrain the assumptions made in these calculations.

     
    more » « less
  2. Abstract

    Measured properties of young stellar objects (YSOs) are key tools for research into pre-main-sequence stellar evolution. YSO properties are commonly measured by comparing observed radiation to existing grids of template YSO spectral energy distributions (SEDs) calculated by radiative transfer. These grids are often sampled and constructed using simple models of mass assembly/accretion over time. However, because we do not yet have a complete theory of star formation, the choice of model sets the tracked parameters and range of allowed values. By construction, then, the assumed model limits the measurements that can be made using the grid. Radiative transfer models not constrained by specific accretion histories would enable assessment of a wider range of theories. We present an updated version of the Robitaille set (2017) of YSO SEDs, a collection of models with no assumed evolutionary theory. We outline our newly calculated properties: envelope mass, weighted-average dust temperature, disk stability, and circumstellarAV. We also convolve the SEDs with new filters, including JWST, and provide users the ability to perform additional convolutions. We find a correlation between the average temperature and millimeter-wavelength brightness of optically thin dust in our models and discuss its ramifications for mass measurements of pre- and protostellar cores. We also compare the positions of YSOs of different observational classes and evolutionary stages in IR color space and use our models to quantify the extent to which class and stage may be confused due to observational effects. Our updated models are released to the public.

     
    more » « less
  3. Abstract NGC 602 is a young, low-metallicity star cluster in the “Wing” of the Small Magellanic Cloud. We reveal the recent evolutionary past of the cluster through analysis of high-resolution (∼0.4 pc) Atacama Large Millimeter/submillimeter Array observations of molecular gas in the associated H ii region N90. We identify 110 molecular clumps ( R < 0.8 pc) traced by CO emission, and study the relationship between the clumps and associated young stellar objects (YSOs) and pre-main-sequence (PMS) stars. The clumps have high virial parameters (typical α vir = 4–11) and may retain signatures of a collision in the last ≲8 Myr between H i components of the adjacent supergiant shell SMC-SGS 1. We obtain a CO-bright-to-H 2 gas conversion factor of X CO, B = (3.4 ± 0.2) × 10 20 cm −2 (K km s −1 ) −1 , and correct observed clump properties for CO-dark H 2 gas to derive a total molecular gas mass in N90 of 16,600 ± 2400 M ⊙ . We derive a recent (≲1 Myr) star formation rate of 130 ± 30 M ⊙ Myr −1 with an efficiency of 8% ± 3% assessed through comparing total YSO mass to total molecular gas mass. Very few significant radial trends exist between clump properties or PMS star ages and distance from NGC 602. We do not find evidence for a triggered star formation scenario among the youngest (≲2 Myr) stellar generations, and instead conclude that a sequential star formation process in which NGC 602 did not directly cause recent star formation in the region is likely. 
    more » « less
  4. Abstract In this work, we present 299 candidate young stellar objects (YSOs) in 30 Doradus discovered using Spitzer and Herschel point-source catalogs, 276 of which are new. We study the parental giant molecular clouds in which these YSO candidates form using recently published Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 7 observations of 12 CO and 13 CO. The threshold for star formation in 30 Doradus inferred by the LTE-based mass surface density is 178 M ⊙ pc −2 , 40% higher than the threshold for star formation in the Milky Way. This increase in star formation threshold in comparison to the Milky Way and increase in line width seen in clumps 11 pc away in comparison to clumps 45 pc away from the R136 super star cluster could be due to injected turbulent energy, increase in interstellar medium pressure, and/or local magnetic field strength. Of the 299 YSO candidates in this work, 62% are not associated with 12 CO molecular gas. This large fraction can be explained by the fact that 75%–97% of the H 2 gas is not traced by CO. We fit a Kroupa initial mass function to the YSO candidates and find that the total integrated stellar mass is 18,000 M ⊙ and that the region has a star formation rate (SFR) of 0.18 M ⊙ yr −1 . The initial mass function determined here applies to the four 150″ × 150″ (37.5 pc × 37.5 pc) subfields and one 150″ × 75″ (37.5 pc × 18.8 pc) subfield observed with ALMA. The SFR in 30 Doradus has increased in the past few million years. 
    more » « less
  5. Abstract

    Stars form within molecular clouds, so characterizing the physical states of molecular clouds is key to understanding the process of star formation. Cloud structure and stability are frequently assessed using metrics including the virial parameter and Larson scaling relationships between cloud radius, velocity dispersion, and surface density. Departures from the typical Galactic relationships between these quantities have been observed in low-metallicity environments. The amount of H2gas in cloud envelopes without corresponding CO emission is expected to be high under these conditions; therefore, this CO-dark gas could plausibly be responsible for the observed variations in cloud properties. We derive simple corrections that can be applied to empirical clump properties (mass, radius, velocity dispersion, surface density, and virial parameter) to account for CO-dark gas in clumps following power-law and Plummer mass density profiles. We find that CO-dark gas is not likely to be the cause of departures from Larson’s relationships in low-metallicity regions, but that virial parameters may be systematically overestimated. We demonstrate that correcting for CO-dark gas is critical for accurately comparing the dynamical state and evolution of molecular clouds across diverse environments.

     
    more » « less
  6. Abstract

    We present results of a wide-field (approximately 60 × 90 pc) Atacama Large Millimeter/submillimeter Array mosaic of CO(2–1) and13CO(2–1) emission from the molecular cloud associated with the 30 Doradus star-forming region in the Large Magellanic Cloud (LMC). Three main emission complexes, including two forming a bow-tie-shaped structure extending northeast and southwest from the central R136 cluster, are resolved into complex filamentary networks. Consistent with previous studies, we find that the central region of the cloud has higher line widths at a fixed size relative to the rest of the molecular cloud and to other LMC clouds, indicating an enhanced level of turbulent motions. However, there is no clear trend in gravitational boundedness (as measured by the virial parameter) with distance from R136. Structures observed in13CO are spatially coincident with filaments and are close to a state of virial equilibrium. In contrast,12CO structures vary greatly in virialization, with low CO surface brightness structures outside of the main filamentary network being predominantly unbound. The low surface brightness structures constitute ∼10% of the measured CO luminosity; they may be shredded remnants of previously star-forming gas clumps, or alternatively the CO-emitting parts of more massive, CO-dark structures.

     
    more » « less